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Abstract. We consider a wide parabolic GaAs/AlGaAs quantum well placed between two
metal plates so that direct current can flow across the well. Sloshing plasma oscillations of the
charge stored in the well modulate the direct current and charges on the plates and in the well
acquire an alternating component. The system can be considered as a capacitor with one plate,
the electronic slab in the well, performing mechanical oscillations (plasmons). The electrostatic
forces acting between the plates of this capacitor cause the oscillations to build up. We derive
an expression for the threshold and estimate the power of the infrared radiation which can be
delivered by the structure.

1. Introduction

Direct current-driven plasma instabilities in GaAs/AlGaAs artificial heterostructures (two-
dimensional layers and superlattices) have attracted much attention due to the interesting
fundamental physics involved and possible applications for generation and amplification of
infrared radiation (see for example [1–7]). In particular much work has been done on the
interaction of direct current flowing along a two-dimensional layer with plasma waves in
the same (or a neighbouring) layer [1–6]. This interaction can result in the growth of the
plasma wave magnitude due to the energy transfer from direct current to plasma waves.
With a suitable coupling arrangement such as a grating, this energy can be converted to
electromagnetic radiation. The basic idea is the same as for the gaseous plasmas in which
the current-excited plasma waves have been studied in detail [8]. In the solid state case the
observation of the instability is hindered by the fact that the electron velocity is generally
smaller than the two-dimensional plasmon velocity. Nevertheless this issue is being pursued
both theoretically and experimentally.

In this paper we describe the novel instability mechanism of plasma vibrations in
GaAs/AlGaAs heterostructures. Figure 1 shows a schematic diagram of the structure. The
main component of the structure is a remotely doped wide parabolic quantum well (PQW)
placed between two electrodes (the cathode and the anode). A PQW (proposed by Halperin
and Gossard in [9]) produces a thick (> 1000 Å) high-mobility nearly three-dimensional
electron slab. The Al composition in the well is graded in such a way as to result in a
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quadratic dependence of the conduction band edge on the distance from the well centre. The
electrons in the well screen the quadratic potential and as a result the electron density (n0)
is nearly constant over the thickness of the electron slab and its magnitude is determined
by the curvature of the confining parabolic potential. For a wide well filled with a dense
electron gas, the electrostatic energy (V0, figure 1) is much larger than the kinetic energy (VF ,
figure 1). The typical investigated areal carrier density (ns) in the PQW ranges from 1011

to 5× 1011 cm−2 [10–13], which corresponds to the three-dimensional densityn0 = ns/W

changing from 1016 to 5× 1016 cm−3 for a well width W = 1000Å. The low-temperature
mobility in such structures has been reported to be as high asµ = 2.5 × 105 cm2 V−1 s−1

[10].

Figure 1. A band-bending diagram of the structure: 1, the cathode; 2, the parabolic quantum
well with a triangular tunnel barrier (this well is remotely doped from the cathode side; an
unscreened parabolic built-in potential is shown by the thin line); and 3, the anode. Inset: the
quantum well with a resonant tunnel barrier.

The electron slab in a PQW can vibrate around the equilibrium position (the sloshing
plasma mode) as a whole without changing the charge distribution inside the slab. For
this reason the electron–electron interaction plays no role in the plasma oscillations and the
plasmon resonant frequencyω0 is determined by the external parabolic build-in potential
[14, 15]. By construction of a PQW the resonant frequencyω0 coincides with the plasma
frequency of a three-dimensional uniform electron gas with densityn0:

ω0 = ωpl =
(

4πe2n0

εm

)1/2

[11], wherem is the electron effective mass,ε is the static dielectric constant of the medium
ande is the electron charge.

When a DC voltage is applied between the cathode and the anode (figure 1) direct
current can flow across the well. We assume that charge leaves the well by tunnelling
through the right-hand side barrier of the PQW. The current is assumed to be small in the
sense that the plasma vibrations in the well (the sloshing mode) are not strongly affected
by it. This requires that the charge transferred by the direct current during one period of
plasma vibrations is much smaller than that stored in the well:

I0T � Q0 or I0 � Q0
ω0

2π
. (1)
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HereI0 is the direct current density flowing across the PQW,T is the period of oscillations
and Q0 is the electric charge (per unit area) in the PQW. The actual values ofI0

satisfying the equation (1) could be quite large. For electron densityn0 = 5 × 1016 cm−3,
ω0 = 2π × 2× 1012 s−1 and from equation 1 it follows thatI0 � 105 A cm−2. We assume
that the electric field between the electrodes is sufficiently high for electrons to move with
saturation velocityvs outside the well.

In this paper we mainly concentrate on the caseL1 � L2 which as we shall show later
is favourable for observation of the instability. In this case the electron layer in the PQW
and the anode constitute a capacitor with one plate (the layer) able to perform mechanical
oscillations (plasmons). Mechanical vibrations of the electron layer in the well result in
oscillations of the chemical potential of the electrons near the barrier and therefore cause an
oscillating component to appear in the electron flow out of the well. This mechanism of the
direct current modulation is referred to as plasmon-assisted tunnelling. The modulation of
the electron flow causes the amount of charge stored in the PQW to oscillate. This additional
oscillating charge which the PQW acquires due to the modulation of direct current induces
an opposite charge of nearly the same magnitude on the anode whereas the oscillating charge
induced on the cathode and the alternating electric field between the cathode and the PQW
are negligible. The oscillating charge on the anode acts on the electronic layer in the PQW
with a force, therefore providing a feedback. We will show that this feedback is positive
and, if the intrinsic damping of the plasma mode is small, then the feedback will result in
the building up of plasma vibrations until the system reaches the stable regime due to some
nonlinear mechanism. In this stable regime the alternating field and alternating conductivity
current between the PQW and the anode can be quite large whereas outside this region the
alternating quantities are small. A consequence of this is that the unavoidable resistances of
the contacts (the anode and the cathode) needed for direct current to flow do not influence
the instability condition. This makes theL1 � L2 geometry favourable for experimental
observation of the instability.

The threshold for the instability depends on the plasma mode damping and the
effectiveness of the plasmon-assisted tunnelling. Two-dimensional lateral plasmon-assisted
tunnelling from a narrow quantum well is discussed in [16] and is shown to be a rather
effective mechanism. Because our system differs from that considered in [16] we cannot
directly use the developed formalism in order to estimate plasmon-assisted tunnelling. In
this paper our main objective is to describe the physical mechanism leading to the plasma
instability and we restrict ourselves to a phenomenological description of the plasmon-
assisted tunnelling by a parameterα which relates the position of the electron slab in the
PQW to the tunnelling current. Accepting a realistic tunnel barrier’s parameters we estimate
α.

2. The simple model

Let us consider at first a simple model in which the electric field of the space charge outside
the well and the alternating conductivity current in the region to the left of the well (figure 1)
are neglected. The width (W ) of the PQW is assumed to be much smaller than the distances
L1 and L2 (figure 1) so that the PQW can be represented by a thin charged layer. The
layer can oscillate around an equilibrium position with some resonant frequencyω0 and this
movement affects the charge flow out of the layer. Although all the simplifying assumptions
of this model will be lifted in the next section of the paper we would like to stress that if
L1 � L2 the simple model leads to the correct equation for the instability threshold. The
physical reason for this is that ifL1 � L2 the alternating electric field in the region between
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the cathode and the PQW is much weaker than that in the region between the PQW and
the anode. Therefore the conductivity current and space charge are small in this region.
What is less obvious and will be shown later is that under the conditionL1 � L2 taking
account of the space charge between the PQW and the anode will not change the instability
threshold either.

Potential differences between the cathode and the PQW and the PQW and the anode are,
respectively,U1 = E1xw(t) and U2 = E2(L − xw(t)). HereE1 and E2 are x projections
of the electric field in the regionsx < xw and xw < x < L in figure 1, xw(t) is the
instantaneous co-ordinate of the charged layer, andL = L1 + L2. The potential difference
between the cathode and the anode isU = U1 + U2 = E1L + (4π/ε)Q(L − xw(t)) where
Q is the areal charge density (Q < 0 for the electronic PQW) of the PQW and the relation
E2 = E1 + (4π/ε)Q betweenE1 andE2 has been used. The deviations of the quantities
involved from equilibrium values are given by the relationsEi = Ei0 + δEi , xw = x0 + δx,
Q = Q0 + δQ and so on. For small deviations one has

δU = δE1L + 4π

ε
L2δQ − 4π

ε
Q0δx (2)

δE2 = δE1 + 4π

ε
δQ (3)

and so on.
The continuity equation relatesδQ and currents coming in (δIc1) and out (δIc2) of the

PQW as follows:

jωδQ = δIc1 − δIc2 (4)

where we have assumed the exp(jωt) time-dependence of all the deviations. In the simple
model δIc1 in equation (4) is neglected. Small deviations (δx) of the electronic slab in
the PQW from its equilibrium position correspond to the proportional change in the tunnel
currentδIc2:

δIc2 = αδx (5)

where the phenomenological parameterα accounts for plasmon-assisted tunnelling. It is
convenient to introduce the dimensionless parameterα∗ according to the relation

α = α∗ ωQ0

W
= α∗ωen0 (6)

where the electron chargee < 0.
Let us now consider the mechanical movement of the slab in the well. The slab

experiences a force from the electric field created by charges on the anode and the cathode.
This ‘external’ (with respect to the layer) electric field (Eext ) can be found as follows. The
field E1 is composed ofEext and the field−(2π/ε)Q, originating from the charge in the
well (the minus sign accounts for the accepted positive direction of thex axis in figure 1)
so thatE1 = Eext − (2π/ε)Q and for the deviations one has

δE1 = δEext − 2π

ε
δQ. (7)

The equation of movement for the charged layer coincides with that for an individual
electron in the well, so we have

(−ω2 + jωγ + ω2
0)δx = e

m
δEext (8)

where γ accounts for a ‘friction’ force acting on electrons in the well. The value of
γ determines the line width of the plasma mode and can be found from far-infrared
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transmission measurements or calculated from the experimental value of the mobility as
γ −1 = τ = µm/e. From the above equations one has

δx = e

m

1

A
δE1 (9)

where

A = −ω2 + ω2
0 + jωγeff γeff = γ − ω2

plα
∗

2ω
.

From equations (2)–(5) and (9) it follows that

δU = LδE1 + j
ω2

plω0α
∗

ωA
L2δE1 − ω2

pl

A
WδE1. (10)

If the external circuit represents zero resistance in some frequency range of interest then
the boundary conditionδU = 0 and equation (10) determine the stability of the equilibrium
state of the system. Using equation (10) we get

0 = A + L2

L

jα∗ω2
plω0

ω
− W

L
ω2

pl. (11)

If L2 � L andL � W the last two terms on the right-hand side of equation (11) are small.
The last one represents the shift in the plasmon resonant frequency due to the interaction
with the cathode and the anode. Neglecting these terms one has

A = −ω2 + ω2
0 + jω

(
γ − ω2

plα
∗

2ω

)
= 0. (12)

We see that the stability condition coincides with that for a harmonic oscillator with the
damping

γeff = γ − ω2
plα

∗

2ω
.

Therefore the system is unstable and charge in the PQW will oscillate if

α∗ > γ
2ω

ω2
pl

≈ 2γ

ω0
. (13)

If the condition (13) is fulfilled then the plasma oscillations build up and the above
linear small-signal consideration becomes invalid. The magnitude of stable oscillations
is determined by the direct currentI0 or by the possible dependence ofα∗ on the magnitude
of charge oscillations in the PQW. It is convenient to illustrate the time-dependence of the
quantities involved graphically without the restrictions of the small-signal approximation.
This is shown in figure 2. Figure 2(a) shows the position of the ‘centre of mass’ of the
charge distribution in the PQW versus time. The movement of the charge towards the
right-hand side barrier is accompanied by in increase of the tunnelling flow of electrons
out of the well (figure 2(b)). The time-dependence of the PQW areal electron density
ns(t) = ns0 + δns(t) is determined by electrons flowing in and out of the well and is shown
in figure 2(c). Because we have neglected the AC componentδIc1 the supply of charge to
the well is due to the direct currentI0 while electrons leave the well in bunches (figure 2(b))
resulting in pulse-like character of the currentIc2. If L1 � L2 an alternating electric charge
on the anodeδQa(t) is nearly equal in magnitude and opposite in sign to the alternating
charge in the PQW:δQa(t) = −δQ(t). The force (δFext ) acting on the charge in the PQW
from chargeδQa(t) is

δFext = −2π

ε
|Q0|δQa = −2π

ε
|Q0|δQ = 2π

ε
|Q0||e|δns.
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Figure 2. A schematic diagram of the time-dependence of the relevant quantities: (a) the
displacement of the electron slab in the well, (b) the electron flow out of the well, (c) the areal
electron density in the well, (d) the alternating component of the areal electron density in the
well, (e) the alternating component of the external electrostatic force acting on the electron slab
in the well and (f) the velocity of the electron slab’s movement.

The time-dependence of the forceδFext is shown in figure 2(e). It is seen thatδFext has the
same direction as the velocity of the PQW charge (δv, figure 2(f)) and therefore supports
the plasma oscillations.

As we have already mentioned, ifL1 � L2 the alternating fieldδE1 and the conductivity
currentδI1 are small. So in the limitL2/L1 → 0 the total alternating current which is the
sum of the conductivity and the displacement current is zero:

δItot = δIc1 + jωε

4π
δE1 ≈ 0.
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Because the total current is the same along the circuit it follows that, in the region between
the PQW and the anode, the conductivity current compensates for the displacement current:

δIc2 = −jωε

4π
δE2

while both these currents may be quite large in magnitude. In this case the plasma
oscillations in the PQW can be considered to be uncoupled from the external circuit in
the sense that there is no alternating current outside the region between the PQW and the
anode. The important consequence of this is that contact resistances cannot influence the
instability condition (13). Formally this result can be obtained in the following way. If there
is some resistance (r) for high-frequency current in the external circuit then the boundary
condition δU = 0 changes toδU + rSδItot = 0, whereS is the area of the structure.
BecauseδIc1 ∼ δE1 the total current can be expressed as

δItot = jωε̃

4π
δE1

whereε̃ is some proportionality coefficient. Then the boundary condition takes the form

δU + rSδItot = LδE1 + L2

jα∗ω2
plω0

ωA
δE1 − W

ω2
pl

A
δE1 + rS

jωε̃

4π
δE1 = 0

or

0 = A

(
1 + rS

L

jωε̃

4π

)
+ L2

L

jα∗ω2
plω0

ω
− W

L
ω2

pl. (14)

It is seen that, insofar as the last two terms in equation (14) can be neglected, the stability of
the system is still determined by equation (13). The weak coupling of the plasma oscillations
with the environment means uneffective transformation of the plasma vibrations into infrared
radiation. Nevertheless, if the instability threshold has been reached the magnitude of plasma
oscillations can develop to a sufficiently high level to be detected.

To estimate the coefficientα∗ one has to specify the tunnelling barrier. We describe the
barrier with the help of the current–voltage (I–V ) characteristic shown in figure 3(a). The
I–V characteristic is assumed to be linear with the current changing from zero toIm when
voltage across the barrier spans some interval1/e (figure 3(a)). The parabolic confining
potential in the PQW can be expressed in the formV (x) = (4V0/W)x2 whereV0 is the
electrostatic energy of electrons in the PQW as shown in figure 3(b) and the co-ordinate
x = 0 corresponds to the centre of the PQW (figure 3(b)). The displacement of the charge
distribution in the PQW byδx towards the barrier results in an increase in the potential
energy of the electrons adjacent to the barrier byδV = (4V0/W)δx. This in turn increases
the current across the barrier by the amount

δIc2 = Im

1
δV = Im4V0

W1
δx

so that from equations (5) and (6) it follows that

α∗ = 4Im

ωQ0

V0

1
. (15)

The barrier is to be optimized for maximum value ofα∗ ∼ Im/1. A triangular barrier
as shown in figure 1 and the resonant tunnel barrier (inset in figure 1) look promising
in this respect. We take valuesIm = 104 A cm−2, 1 = 10 meV, V0 = 150 meV [10],
Q0 = 5×1011e. These values are relevant to the tunnelling through an intermediate resonant
state in a double-barrier resonant tunnelling structure (RTS). We have chosen this type of
tunnelling barrier in order to estimateα∗ because it has been investigated experimentally
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Figure 3. An illustration of the plasmon-assisted tunnelling: the displacement of the electron
slab in the well byδx corresponds to a change in electron chemical potential near the barrier
by 1: (a) theI–V characteristic of a tunnel barrier and (b) the band-bending diagram for the
electron wide quantum well.

in great detail [17–19]. The value1 = 10 meV ensures that the quasi-bound-state lifetime
τ ∗ (τ ∗ = h̄/0 ≈ h̄/1, 0 is the width at half maximum of the transmission probability
function [17, 18]) is of the order of 10−13 s, which is much smaller than the period of the
oscillations. The required value ofτ ∗ corresponds to a thin (6 20 Å) AlGaAs tunnel barrier
[17]. The value ofIm = 104 A cm−2 is based on experimental values of the peak current
through a RTS [17–19]. The value0 = 1 = 10 meV implies that the peak current density
will be larger than 105 A cm−2 if the electron density in the cathode of a RTS is 1018 cm−3.
Therefore, for electron density in the PQWn0 = 5 × 1016 cm−3, one can take the peak
current density to be 104 A cm−2. On substituting the above numerical values one gets
α∗ = 0.6 which is significantly larger than 2γ /ω0 = 0.05 for the electron mobility in the
PQW 105 cm2 V−1 s−1 andω0 = 2π ×2×1012 s−1. There is another dissipative mechanism
to consider. LetN be the ratio ofQ0 to the amount of charge crossing the PQW during one
period of oscillation. Electrons entering the PQW from the left-hand side (figure 1) have
momentum different from that of oscillating electrons in the well. The electron–electron
interaction in the well can therefore result in fractional energy losses during one period of
at most 2/N . The quality factor associated with this mechanism of dissipation isπN and
the corresponding increase in plasmon line width isγ ′ = ω0/(πN). For the instability to
happen one needsα∗ > 2(γ + γ ′)/ω0.

If we take Im ≈ I0, which can be seen from figure 2(b) in figure 2 to be a good
approximation then from equation (15) it follows that

α∗ = 8

2π

I0T

Q0

V0

1
≈ 1

N

V0

1
. (16)
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The instability condition can now be re-written in the form

1

N

V0

1
>

2γ

ω0
+ 2

πN

which shows that losses due to the electron–electron interaction in the well do not prevent
the instability. Equations (15) and (17) show that the large value obtained forα∗ is due to
the large value of the ratioV0/1 (figure 3(b)), whereasN should not be much less than 10
for the assumption that oscillations in the well are weakly disturbed by the current to be
valid.

The power delivered by an external direct current source to plasma vibrations in PQW
can be estimated asP = 1

2(δFext )
∗δυ, where the superscript∗ denotes the complex

conjugate andδυ = jωδx is the velocity of the electron collective movement in the well.
The amplitude of the PQW’s charge displacement in the regime of stable oscillations can
be estimated asδx ≈ I0/α and, by making use of the expressionsδFext = (2π/ε)Q0δQ,
δQ ' I0/ω and equation (6) we have

P ≈ I 2
0

α∗
πW

εω

which gives forI0 ≈ 104 A cm−2 andW = 10−5 cm, P ' 50 W per 1 cm2 of the active
area of the structure.

For optimal coupling of the structure to an appropriate infrared waveguide system one
can expect the power level transformed into infrared radiation to be comparable withP .
This suggests that the predicted instability can not only be detected experimentally but could
also have practical applications.

3. Taking into account the space charge

It is convenient to use the conservation law for the total current

δItot = δIc(x) + jωε

4π
δE(x) = constant. (17)

Let the current through the cathode barrier (figure 1) beδIc(x1) = gδE(x1), where the
coefficientg is the cathode barrier conductivity. The conductivity current at arbitraryx in
the regionx1 < x < L1 is

δIc(x) = δIc(x1) exp[−jk(x − x1)] = gδE(x1) exp[−jk(x − x1)] (18)

where k = ω/υs . Equating the total current atx = x1 and at arbitraryx in the region
x1 < x < x2 one finds for the electric field

δE(x) = 4π

jωε
δE(x1)

(
jωε

4π
+ g − g e−jk(x−x1)

)
. (19)

IntegratingδE(x) gives the voltage across the [x1, x2] region:

δU1,2 = δE(x1)

[
L1

(
1 + 4πg

jωε

)
+ 1

k

4πg

ωε
(e−jθ1 − 1)

]
(20)

whereθ1 is the transit timeθ1 = kL1 = ωL1/υs .
Assuming that the charge density in the region [x2, x3] is constant and equal to

(Q0 + δQ)/W one obtains for the voltage across this region

δU2,3 = WδE(x2) + 2π

ε
WδQ − 4π

ε
Q0δx
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where the displacement of the electron charge distributionδx is given by equation (9) with
δE1 substituted byδE(x2). By using equations (4) and (18) and expressingδE(x2) in terms
of δE(x1) with the help of equation (19) one obtains the expression

δU2,3 = WδE(x1)

[(
1 + jα∗ω2

pl

2A
− ω2

pl

A

) (
1 + 4πg

jωε
(1 − ejθ1)

)
+ 2πg

jωε
e−jθ1

]
. (21)

To calculate the potential drop in the third region we introduce a parameterψ

ψ = δIc(x3)/δItot . (22)

From equation (17) we find

δItot =
(

jωε

4π
+ g

)
δE(x1). (23)

The currentδIc(x3) can be calculated by using equations (5), (6), (19) and (9) (withδE1

substituted byδE(x2)):

δIc(x3) = α∗ω0e
2n0

m

(
1 + 4πg

jωε
(1 − e−jθ1)

)
δE(x1)

A
. (24)

Equations (22) to (24) give

ψ = α∗ω0ω
2
pl

A

ε

4πg + jωε

(
1 + 4πg

jωε
(1 − e−jθ1)

)
. (25)

From equation (17) one has for an arbitraryx in the interval [x3, x4]

δItot = jωε

4π
δE(x) + ψ e−jk(x−x3)δItot

and therefore

δE(x) = 4π

jωε
δItot (1 − ψ e−jk(x−x3)). (26)

IntegratingδE(x) gives the voltage across the [x3, x4] region:

δU3,4 = 4π

jωε
δItot

(
L2 − j

ψ
k

(e−jθ2 − 1)
)

θ2 = kL2

and using equation (23) we finally have

δU3,4 = δE(x1)

(
1 + 4πg

jωε

) (
L2 − j

ψ
k

(e−jθ2 − 1)
)

. (27)

The potential difference between the cathode and the anode isδU = δU1,2 + δU2,3 + δU3,4.
The stability of the system is determined by the boundary conditionδU = 0 together with
equations (20), (21) and (27).

As a result one obtains an equation of the type

0 = A + O

(
L2

L1

)
+ O

(
W

L1

)
+ O

(
1

kL1

)
where the three last terms are proportional toL2/L1, W/L1 and 1/(kL1), respectively. The
ratio 1/(kL1) is about 10−2 for υs × 107 cm s−1, ω0 = 2π × 2× 1012 s−1 andL1 = 1 µm.
Therefore ifL1 � L2, W accounting for the space charge does not change the instability
threshold.

The space-charge effects become important whenL1 andL2 are of the same order of
magnitude. It can be shown that, by proper choice ofL1 and L2, one can suppress the
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plasma instability and at the same time the differential resistance of the structure can be
negative within some frequency range if condition (13) is fulfilled. This can be used for
the amplification of infrared radiation. The additional (to the simple consideration) effect
which is brought about by the space charge is the well-known ‘transit time’ effect. When
there is a non-zero phase shift between the conductivity current entering some layer and
the total current then the finite time it takes the charge to cross the layer can result in a
negative differential resistance. This effect is widely used in solid state microwave transit
time devices. In the present structure the phase shift between the conductivity and total
currents in the region [x3, x4] strongly depends on frequency because the phase of the plasma
vibrations is a rather complicated function of the frequency. It is tempting to use the transit
time effect together with the plasmon-assisted tunnelling for the amplification of infrared
radiation. The above expressions allow one to analyse the structure operation for arbitrary
L1, L2 and frequency.

4. Conclusion

We have shown that the electron layer in a PQW can be made unstable with respect to
sloshing plasma oscillations. It appears that the threshold condition can be attained at low
(4 K) and probably at liquid nitrogen temperatures because the electron mobility could
still be rather high at this temperature. Considering the discussed structure as a possible
candidate for a solid-state far-infrared source, it is worth noticing that the structure allows
for some degree of frequency-tunability. The external potential which defines the well
(figure 1) can be tailored in a very precise way during the growth in order to introduce non-
parabolic terms, as discussed in [20]. The resonant plasma frequency in such a well depends
slightly on the electron density in the well and therefore on the structure bias conditions.
We also believe that sloshing-plasma-mode-assisted tunnelling, the process which involves
interaction between collective and single-particle excitations, is a very interesting subject
in its own right, and can provide an additional way of studying the electronic structure of
wide parabolic quantum wells.
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